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ABSTRACT
Recent success in solving hard reinforcement learning problems
can be partly credited to the use of deep neural networks, which
can extract high-level features and learn compact state represen-
tations from high-dimensional inputs, such as images. However,
the large networks required to learn both state representation and
policy using this approach limit the effectiveness and benefits of
neuroevolution methods that have proven effective at solving sim-
pler problems in the past. One potential solution to this problem is
to separate state representation and policy learning and only apply
neuroevolution to the latter. We extend research following this
approach by evolving small policy networks for Atari games using
NEAT, that learn from compact state representations provided by
the recently released Atari Annotated RAM Interface (Atari ARI).
Our results show that it is possible to evolve agents that exceed
expert human performance using these compact state representa-
tions, and that, for some games, successful policy networks can be
evolved that contain only a few or even no hidden nodes.
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1 INTRODUCTION
Before the adoption of deep neural networks for reinforcement
learning, the only solvable problems were those for which low-
dimensional, high-quality state representations could be constructed.
Now, deep reinforcement learning has led to success in solvingmore
complex problems, such as video games, by combining feature ex-
traction and state representation learning with policy learning. This
end-to-end learning approach removes the need for feature engi-
neering, but, due to the large networks required, rules out many
topology and weight evolving neuroevolution algorithms, such as
NEAT [5], that are effective at finding solutions for simpler domains.
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One potential solution that could allow us to exploit the benefits
of both deep neural networks and evolutionary reinforcement learn-
ing is to separate end-to-end learning into two components: state
representation learning and policy learning. With this approach,
gradient-based methods, such as auto-encoders, might be used for
feature extraction and for learning condensed state representations,
enabling evolutionary methods to be used for policy learning.

In this work, we expand on prior work combining deep learning
and neuroevolution [1, 4] by investigating the plausibility of evolv-
ing Atari agents using NEAT that learn to play from compact state
representations, similar to those we might expect to be learned via
state representation learning. The state representations we use are
provided by the recently released Atari Annotated RAM Interface
(Atari ARI) [2]. This interface identifies the specific bytes of RAM
that store states variables that are important for playing each game,
reducing the size of the input space by up to 93% when compared
to using the entire contents of RAM.

2 METHOD
This section provides an outline of our method. Our source code,
and the full details and discussion of our experiments and results,
can be found at evolvingatari.adamtupper.nz.

2.1 State Representations and Game Selection
We use 14 of the 22 games supported by the Atari ARI in our evalu-
ations. We selected this subset of games because our inspection of
the objectives for each game revealed inadequacies in some of the
state representations provided. We categorise the supported games
into three categories: poor, fair and good; based on the perceived
quality and completeness of the state representations provided by
the Atari ARI, and use only games with either fair or good repre-
sentations in our evaluations. These representations are deemed
to include enough information to develop an adequate or optimal
strategy from respectively.

2.2 Proposed Neuroevolution
We use our own implementation of NEAT to evolve time-delayed re-
current neural networks that propagate the outputs of each neuron
forward at each time step. Although this means the initial outputs
are not influenced by the inputs, these networks do not require a
topological ordering of nodes or the specification of whether lat-
eral connections are recurrent. Our evolved networks also include
explicit biases. To better fit the Atari domain, we also adapt NEAT
to support negative fitness values. This is achieved by using the
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difference between the individual’s fitness and the lowest fitness in
the population as an adjusted fitness value.

2.3 Experimental Setup
A single set of hyperparameter values were used to evolve a sepa-
rate policy for each game. These were chosen based on informal
experimentation on a subset of three games: Asteroids, Boxing, and
Pong. For each game, three evolutionary runs, each lasting 200
generations, were performed, using a population size of 130. Each
agent’s fitness was defined as the average total accumulated reward
over three episodes of gameplay. The length of an episode was
capped at 20,000 frames (approximately five minutes of real-time
gameplay) to ensure that all episodes terminate. The best policy
from each run was evaluated for 100 episodes, and the policy with
the highest average reward is reported in our results. The human-
normalised scores are calculated using the expert human scores
published alongside DQN [3]. The only exception to this is for Berz-
erk, a game not included in their evaluations. For Berzerk, we use
the record human score listed on www.twingalaxies.com.

3 OVERALL PERFORMANCE
Fig. 1 shows the human-normalised performance of each of the best
agents; as can be seen, performance varies substantially between
games. While the agents for Video Pinball, Boxing and Bowling
exceed or match expert human performance, for other games the
agents perform far worse. Although most of the best performing
games (Boxing, Bowling and Freeway) have good state representa-
tions, the highest performing agent was found for Video Pinball.
This illustrates that for some games, good strategies can still be
discovered with imperfect information.
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Figure 1: The human-normalised performance of the best
agent for each game. The bar colour denotes the quality of
the state representation provided by the Atari ARI.

When initially evolving policies for Tennis, we found that the
population quickly converged on a strategy of waiting for the frame
cap to be reached by refusing to serve the ball, because early strate-
gies performed poorly and accumulated negative rewards. To ad-
dress this, we set the reward for agents that reached the frame cap
to the minimum possible reward (-24). We report the results for the
original and modified settings as Tennis A and B, respectively.

4 EVOLVED ARCHITECTURES
Inspecting the architectures of high-performing agents reveals some
surprising simplicity. None of the solutions to any games evolved
many hidden nodes (the maximum was six for Asteroids), even the
networks for high-performing solutions were very simple. This may
have been a consequence of the particular hyperparameter values
chosen, but it shows that simplicity is not the sole explanation of
poor performance. The best-performing agent for Freeway (shown
in Fig. 2) epitomises this simplicity, utilising only a single hidden
node. Interestingly, the inputs for some cars are disabled, indicating
that this information can be derived from the positions of the others.
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Figure 2: The evolved network architecture for the top per-
forming Freeway agent. Unused inputs are excluded.

5 CONCLUSIONS
Although evolved policies only exceeded or were competitive with
expert human performance in a handful of games, we discovered
that surprisingly simple and small neural networks could play these
games effectively. We plan to extend our work by incorporating
NEAT in a separated state representation and policy learning frame-
work to evaluate the overall effectiveness of this approach.
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